Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Chloramine-B sesquihydrate

Elizabeth George, ${ }^{\text {a }}$ Subramania Vivekanandan ${ }^{\text {a }}$ and Kandasamy Sivakumar ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, Pachaiyappa's College, Chennai 600 030, India, and
${ }^{\text {b }}$ Department of Physics, Anna University, Chennai 600 025, India
Correspondence e-mail: surya@annauniv.edu

Received 2 February 2000
Accepted 23 May 2000

In the title compound, sodium N-chlorobenzenesulfonamide sesquihydrate, $\mathrm{Na}^{+} \cdot \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{ClNO}_{2} \mathrm{~S}^{-} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$, the sodium ion exhibits octahedral coordination by O atoms from three water molecules and by three sulfonyl O atoms of three different N -chlorobenzenesulfonamide anions. A two-dimensional polymeric layer consists of units, each comprising two facesharing octahedra which share four corners with four other such units, the layer running parallel to the $a b$ plane. The water molecules participate in hydrogen bonds of the types $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}, \mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$.

Comment

The chemistry of N-haloarenesulfonamidates (NHAS) such as chloramine-T (N-chloro- p-toluenesulfonamide sodium salt trihydrate) and chloramine-B (N-chlorobenzenesulfonamide sodium salt hydrate) has made notable strides in diverse fields over the past century. They are good oxidants, efficient halogenators and versatile analytical and synthetic reagents. Their importance extends to wider scientific fields and technology, as is evident from their application to waste-water treatment, seed and grain protection, and the preparation of organic compounds. NHAS are also biologically and medicinally important and are used as antiseptics, disinfectants and fungicides. In industry, they are used in the dyeing and bleaching of cellular fabrics, and in the production of polymer latexes.

(I) $R=\mathrm{H}, \mathrm{n}=1.5$
(II) $R=\mathrm{Me}, \mathrm{n}=3$

Few crystallographic reports on NHAS compounds have been published except for that on chloramine-T, (II) (Olmstead \& Power, 1986), which investigated the interaction with the sodium ion and reported that the expected $\mathrm{Na} \cdots \mathrm{N}$ ion interaction was not present. Moreover, the structure
revealed the sodium ion coordination as octahedral, formed by one of the sulfonate O atoms, water O atoms and the Cl atom. These authors concluded that within the molecular anion, the negative charge is located on the sulfonyl O rather than on the N atom. As a part of our work on the solid-state and solution studies of NHAS, we have determined the crystal structure of the title compound, (I) (Fig. 1). It is also of importance to us to determine crystallographically the number of water molecules of hydration present in this compound.

Our results revealed that (I) is present as a sesqihydrate, in contrast with the trihydrate form found for (II). The bond distances involved in the phenyl ring are normal. The $\mathrm{S}=\mathrm{O}$ distances in (I) [S1=O11.446 (3) and $\mathrm{S} 1=\mathrm{O} 21.420$ (4) \AA] are different from those observed in (II) $[1.455$ (2) and $1.439(2) \AA]$. The $\mathrm{N} 1-\mathrm{Cl} 1$ distance of $1.742(4) \AA$ is also shorter than in (II). The coordination around the sodium ion is octahedral, with all four available O atoms taking part and with the $\mathrm{Na}-\mathrm{O}$ distances varying from 2.339 (4) to 2.486 (4) A. We observed no interaction between nitrogen and sodium in (I), in agreement with the results of Olmstead \& Power (1986) for (II) (see below). Moreover, in (I), the sodium ion is coordinated only by the O atoms from sulfonyl and water; the chlorine does not participate as in (II). As both the sulfonyl O atoms are coordinated to the sodium ions, our results establish that the negative charge is concentrated on the sulfonyl O atoms rather than on the nitrogen of the anion, as suggested for (II) by Olmstead \& Power (1986).

Figure 1
Displacement ellipsoid plot of (I) with the atom-numbering scheme, showing 50% probability ellipsoids. The H atoms on the water molecules could not be located and are therefore not shown [symmetry codes: (i) $\frac{3}{2}-x, y-\frac{1}{2}, 1-z$; (ii) $2-x, y, 1-z$; (iii) $\left.\frac{3}{2}-x, \frac{1}{2}+y, 1-z\right]$.

It is worth mentioning the sodium environment and the lattice formation in the two NHAS compounds (I) and (II). The salt (II) forms dimers, but these dimers are connected by long $\mathrm{Na} \cdots \mathrm{Cl}$ contacts to form polymeric chains along the crystallographic b axis, whereas in (I), the two-dimensional polymeric structure is formed parallel to the $a b$ plane. The latter situation arises because the octahedral coordination around the sodium ion exclusively involves the sulfonyl and the water O atoms. The two-dimensional polymeric layer (Fig. 2) consists of face-sharing octahedra formed by two sodium ions and these twin octahedra are found to be corner sharing with other twin octahedra at four corners.

The Cl atom does not have any interaction with the sodium ion, suggesting that there is a smaller negative charge on Cl 1 in (I) compared with (II). The electron-releasing methyl group in (II) may act to block the movement of charge from the chlorine to the sulfonyl O atoms, thereby keeping more negative charge on the chlorine than in (I). We believe that this explains the lack of interaction between Cl and Na in the latter structure.

The crystal structure contains $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}, \mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds involving the water molecules. Since the water H atoms could not be located, only the donor-to-acceptor distances are given: $\mathrm{O} 1 W \cdots \mathrm{O} 2^{\text {iv }}$ 3.125 (5), O1W...N1 ${ }^{\text {iv }} 2.861$ (5), O2W‥N $1{ }^{\mathrm{v}} 2.897$ (5) and $\mathrm{O} 1 W \cdots \mathrm{Cl} 1^{\mathrm{v}} 3.430$ (4) \AA [symmetry codes: (iv) $x-\frac{1}{2}, y-\frac{1}{2}, z$; (v) $x, y-1, z]$.

Figure 2
The polymeric structure viewed along the b axis, showing the $\mathrm{Na}-\mathrm{O}-\mathrm{Na}$ connectivity along the a axis.

Experimental

The title compound was purchased from Fluka and single crystals were obtained by slow evaporation from a saturated solution in distilled water.

Crystal data

$\mathrm{Na}^{+} \cdot \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{ClNO}_{2} \mathrm{~S}^{-} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=240.63$
Monoclinic, C2
$a=10.450(3) \AA$
$b=6.623(3) \AA$
$c=14.828$ (4) \AA
$\beta=103.31(3)^{\circ}$
$V=998.7(6) \AA^{3}$
$Z=4$

Data collection

Enraf-Nonius CAD-4 diffractometer
$\theta / 2 \theta$ scans
Absorption correction: ψ scan (MolEN; Fair, 1990)
$T_{\text {min }}=0.87, T_{\text {max }}=0.98$
1536 measured reflections
963 independent reflections
902 reflections with $I>2 \sigma(I)$
$D_{x}=1.600 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=8-22^{\circ}$
$\mu=0.614 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Plate, colourless
$0.20 \times 0.20 \times 0.08 \mathrm{~mm}$

$$
\begin{aligned}
& R_{\mathrm{int}}=0.020 \\
& \theta_{\max }=25.02^{\circ} \\
& h=-12 \rightarrow 12 \\
& k=-6 \rightarrow 7 \\
& l=-14 \rightarrow 17 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 100 \text { reflections } \\
& \quad \text { intensity decay: }<2 \%
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.080$
$S=1.146$
963 reflections
123 parameters
H -atom parameters constrained

```
\(w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.028 P)^{2}+0.979 P\right]\)
    where \(P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3\)
\((\Delta / \sigma)_{\max }=0.001\)
\(\Delta \rho_{\text {max }}=0.23 \mathrm{e}^{-3}\)
\(\Delta \rho_{\min }=-0.24 \mathrm{e} \mathrm{A}^{-3}\)
Absolute structure: Flack (1983)
Flack parameter \(=0.03(15)\)
```

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Na} 1-\mathrm{O} 1^{\text {i }}$	2.339 (4)	$\mathrm{Na} 1-\mathrm{Na} 1^{\text {ii }}$	3.295 (3)
$\mathrm{Na} 1-\mathrm{O} 2$	2.425 (4)	$\mathrm{Cl} 1-\mathrm{N} 1$	1.742 (4)
$\mathrm{Na} 1-\mathrm{O} 2{ }^{\text {ii }}$	2.486 (4)	S1-O2	1.420 (4)
Na1-O1W	2.459 (4)	S1-O1	1.446 (3)
$\mathrm{Na} 1-\mathrm{O} 1 W^{\text {iii }}$	2.416 (4)	S1-N1	1.592 (4)
Na1-O2W	2.428 (4)	S1-C1	1.771 (5)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Na} 1-\mathrm{O} 1 W^{\text {iii }}$	91.08 (14)	$\mathrm{O} 2-\mathrm{Na} 1-\mathrm{O} 1 W$	81.01 (13)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Na} 1-\mathrm{O} 2$	172.42 (15)	$\mathrm{O} 2 W-\mathrm{Na} 1-\mathrm{O} 1 W$	80.91 (12)
$\mathrm{O} 1 W^{\text {iii }}-\mathrm{Na} 1-\mathrm{O} 2$	92.30 (16)	$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Na} 1-\mathrm{O} 2^{\mathrm{ii}}$	109.69 (14)
$\mathrm{O} 1^{\text {i }}-\mathrm{Na} 1-\mathrm{O} 2 \mathrm{~W}$	97.92 (14)	$\mathrm{O} 1 W^{\text {iii }}-\mathrm{Na} 1-\mathrm{O} 2{ }^{\text {ii }}$	79.19 (14)
$\mathrm{O} 1 W^{\text {iii }}-\mathrm{Na} 1-\mathrm{O} 2 W$	159.02 (13)	$\mathrm{O} 2-\mathrm{Na} 1-\mathrm{O} 2{ }^{\text {ii }}$	77.63 (14)
$\mathrm{O} 2-\mathrm{Na} 1-\mathrm{O} 2 \mathrm{~W}$	81.17 (13)	$\mathrm{O} 2 W-\mathrm{Na} 1-\mathrm{O} 2{ }^{\text {ii }}$	79.94 (13)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Na} 1-\mathrm{O} 1 W$	91.42 (14)	$\mathrm{O} 1 W-\mathrm{Na} 1-\mathrm{O} 2^{\text {ii }}$	153.17 (13)
$\mathrm{O} 1 W^{\text {iii }}-\mathrm{Na} 1-\mathrm{O} 1 W$	117.94 (11)	$\mathrm{S} 1-\mathrm{N} 1-\mathrm{Cl} 1$	109.5 (2)
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{N} 1-\mathrm{Cl} 1$	176.1 (2)	$\mathrm{C} 1-\mathrm{S} 1-\mathrm{N} 1-\mathrm{Cl} 1$	60.3 (3)
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{N} 1-\mathrm{Cl} 1$	-58.3 (3)		

The H atoms in the benzene ring were geometrically fixed and allowed to ride on their respective C atoms with $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The water H atoms could not be located from difference maps.

Data collection: MolEN (Fair, 1990); cell refinement: MolEN; data reduction: MolEN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1997); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1983).

We thank Dr Babu Varghese, RSIC, IIT, Chennai, for his help in data collection and discussions. EG thanks the University Grants Commission, India, for financial assistance and Dr S. Lakshmi, Department of Chemistry, Sri Sarada College for Women, Salem, for useful discussions.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BM1403). Services for accessing these data are described at the back of the journal.

References

Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands. Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Olmstead, M. M. \& Power, P. P. (1986). Inorg. Chem. 25, 4057-4058.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Zsolnai, L. (1997). ZORTEP. University of Heidelberg, Germany.

